Data Fusion with Optimized Block Kernels in LS-SVM for Protein Classification
نویسنده
چکیده
In this work, we developed a method to efficiently optimize the kernel function for combined data of various different sources with their corresponding kernels being already available. The vectorization of the combined data is achieved by a weighted concatenation of the existing data vectors. This induces a kernel matrix composed of the existing kernels as blocks along the main diagonal, weighted according to the corresponding the subspaces span by the data. The induced block kernel matrix is optimized in the platform of least-squares support vector machines simultaneously as the LS-SVM is being trained, by solving an extended set of linear equations, other than a quadratically constrained quadratic programming as in a previous method. The method is tested on a benchmark dataset, and the performance is significantly improved from the highest ROC score 0.84 using individual data source to ROC score 0.92 with data fusion.
منابع مشابه
Exploring Kernels in Svm-based Classification of Larynx Pathology from Human Voice
In this paper identification of laryngeal disorders using cepstral parameters of human voice is investigated. Mel-frequency cepstral coefficients (MFCC), extracted from audio recordings, are further approximated, using 3 strategies: sampling, averaging, and estimation. SVM and LS-SVM categorize preprocessed data into normal, nodular, and diffuse classes. Since it is a three-class problem, vario...
متن کاملEnhanced Least Squares Support Vector Machines for Decision Modeling in a Multi-Sensor Fusion Framework
In this article we introduce a software framework for embedded online data fusion on different levels of data abstraction. We present our data oriented fusion model and introduce the main functional units. The paper is focused to the decision modeling process. In our approach we use Support Vector Machines (SVM) as well as Least Squares SVM (LS-SVM) for decision modeling. Due to the computation...
متن کاملLinear and Nonlinear Multivariate Classification of Iranian Bottled Mineral Waters According to Their Elemental Content Determined by ICP-OES
The combinations of inductively coupled plasma-optical emission spectrometry (ICP-OES) and three classification algorithms, i.e., partial least squares discriminant analysis (PLS-DA), least squares support vector machine (LS-SVM) and soft independent modeling of class analogies (SIMCA), for discriminating different brands of Iranian bottled mineral waters, were explored. ICP-OES was used for th...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملSupervised Selective Kernel Fusion for Membrane Protein Prediction
Membrane protein prediction is a significant classification problem, requiring the integration of data derived from different sources such as protein sequences, gene expression, protein interactions etc. A generalized probabilistic approach for combining different data sources via supervised selective kernel fusion was proposed in our previous papers. It includes, as particular cases, SVM, Lass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013